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Self-similar shedding of vortex rings
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The roll-up of an initially spherical vortex sheet into a vortex ring is computed using
the vortex blob method. The ring sheds about 30% of its circulation into a tail which,
in turn, rolls up into a ring that sheds circulation. The process repeats itself at smaller
and smaller scales in a self-similar manner. The relation between the vortex shedding
and the energy of the vortices is investigated. In contrast, an initially cylindrical vortex
sheet rolls up into a vortex pair that sheds essentially no circulation.

1. Introduction
Consider a sphere immersed in stagnant inviscid fluid which is impulsively set into

motion. The resulting potential flow is induced by an axisymmetric vortex sheet in
place of the sphere. This paper studies the evolution of the vortex sheet under its self-
induced velocity, as if the sphere were dissolved and the fluid within it allowed to move
with the flow. The axisymmetric flow is compared to the planar flow generated by
the impulsive motion of a cylinder. Rottman, Simpson & Stansby (1987) performed
an experiment simulating the cylindrical scenario by quickly removing a hollow
cylinder immersed in a crossflow. They also computed this flow using a vortex-in-
cell method and compared numerical and experimental results. Rottman & Stansby
(1993) computed the planar flow using the vortex blob method. The axisymmetric
flow was computed by Winckelmans et al. (1995) using a three-dimensional vortex
particle method.

Here, we compute the planar and axisymmetric flow to longer times than in prior
work, using the vortex blob method. The method consists of regularizing the singular
governing equations by introducing an artificial parameter δ (Chorin & Bernard 1973;
Anderson 1985; Krasny 1986). Comparisons with solutions of the Navier–Stokes
equations (Tryggvason, Dahm & Sbeih 1991) and with experimental measurements
(Nitsche & Krasny 1994) show that the method approximates viscous flow well for
sufficiently small values of the artificial smoothing parameter and viscosity.

The computed planar and axisymmetric sheets roll up into a vortex pair and a
vortex ring respectively as they travel in the direction of the given impulse. However,
the vortex ring sheds about 30% of its circulation into a tail which, in turn, rolls up
into a vortex ring. This observed shedding and roll-up repeats itself in a self-similar
manner, forming a sequence of vortex rings of decreasing size in the tail of the leading
ring. In contrast, the vortex pair does not shed any significant amount of circulation.
The results are shown to be essentially independent of the flow regularization. The
relation between the observed shedding and the energy of the vortex rings is also
discussed, motivated by the work of Gharib, Rambod & Shariff (1998) relating the
energy and the circulation of vortex rings generated in laboratory experiments.
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The paper is organized as follows. Section 2 describes the initial conditions and
the governing equations. Section 3 presents the computed vortex sheet roll-up and
discusses the vortex shedding process. The results are summarized in § 4.

2. Problem formulation
2.1. Initial conditions

Let (x, y, z) be a Cartesian coordinate system such that the initially cylindrical and
spherical sheets are centred at the origin and the z-axis equals the axis of the cylinder.
The impulsively given initial velocity is (U, 0, 0). The radius of the cylinder and sphere
is a. The vortex sheets at time t are described by their cross-section with the upper
(x, y)-plane (x(α, t), y(α, t)), and by their circulation distribution Γ (α). Here, α is a
Lagrangian parameter chosen to be the initial angular coordinate in the (x, y)-plane.
The circulation is obtained by integrating the jump in the tangential velocity across
the sheet, σ, with respect to arclength, s. From the initial streamfunction (Batchelor
1967, §§ 6.6, 6.8) it follows that

σ2d(s, 0) = 2U sin α, σ3d(s, 0) = 3
2
U sin α, s = aα, 0 6 α 6 π, (2.1)

and Γ (α) =
∫ s(α)

0
σ(s, 0)ds is obtained accordingly. Here, 2d and 3d refer to the planar

and axisymmetric case respectively.
The total circulation in the upper half of the (x, y)-plane, ΓT = Γ (π), is

ΓT,2d = 4Ua, ΓT,3d = 3Ua. (2.2)

The flow is non-dimensionalized with respect to the total circulation ΓT and the
initial radius a. With this choice, the initial conditions are given by

x(α, 0) = cos α, y(α, 0) = sin α, Γ (α) = (1− cos α)/2, 0 6 α 6 π. (2.3)

The corresponding non-dimensional velocity U is U2d = 1/4, U3d = 1/3.

2.2. Evolution equation

The vortex sheet is a superposition of vortex elements with strength dΓ = Γ ′(α)dα.
The planar and axisymmetric elements are counter-rotating pairs of vortex lines and
circular vortex filaments respectively. The regularized streamfunction at (x, y) induced
by an element at (x̃, ỹ) of unit strength is

ψ2d(x, y, x̃, ỹ) = − 1

4π
log

(x− x̃)2 + (y − ỹ)2 + δ2

(x− x̃)2 + (y + ỹ)2 + δ2
, (2.4a)

ψ3d(x, y, x̃, ỹ) =
yỹ

4π

∫ 2π

0

cos θ

(ρ2 + δ2)1/2
dθ, (2.4b)

where ρ2 = (x− x̃)2 + y2 + ỹ2 − 2 y ỹ cos θ and δ is the regularization parameter. The
global streamfunction for the vortex sheet is obtained by superposition,

ψ(x, y, t) =

∫ π

0

ψ(x, y, x(α, t), y(α, t))Γ ′(α) dα. (2.5)

The induced velocities are obtained from the streamfunction,

(u, v)2d =

(
∂ψ

∂y
,−∂ψ

∂x

)
, (u, v)3d =

(
1

y

∂ψ

∂y
,−1

y

∂ψ

∂x

)
, (2.6)
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Figure 1. Computed planar solution at the indicated times, using δ = 0.2.

and the sheets evolve under self-induction

dx

dt
(α, t) = u(x(α, t), y(α, t), t),

dy

dt
(α, t) = v(x(α, t), y(α, t), t), (2.7)

with the given initial conditions (2.3). The figures in the next section plot the computed
solution (x(α, t), y(α, t)), 0 6 α 6 π, together with its image in the lower (x, y)-plane.

2.3. Numerical method

The sheets are discretized by mesh points (xj, yj), j = 1, . . . , N, corresponding to an
initially uniform discretization in the parameter α. The points satisfy a system of
ordinary differential equations obtained by evaluating the integrals on the right-hand
side of equation (2.7) using the trapezoid rule. The system is integrated in time
with the fourth-order Runge–Kutta method. As the vortex sheets roll up and stretch,
additional mesh points are inserted to maintain resolution (Krasny 1987).

3. Numerical results
3.1. Vortex sheet roll-up

Figure 1 plots the evolution of the initially cylindrical vortex sheet at the indicated
times, computed with δ = 0.2. The sheet rolls up into two counter-rotating spirals as
it travels in the direction of the given impulse. The vorticity is maximal at the spiral
centre and the roll-up approximates a vortex pair. At t = 40, a portion of the sheet
forms a lip at the rear of the vortex. One might expect this lip to stay behind the
vortex at later times, but instead it is mostly entrained and moves with the vortex. At
t = 150, only 1.5% of the total vorticity stays behind in the shape of a thin tail. Note
that this tail stems in part from the observed lip, and in part from folds in the outer
vortex sheet turns visible at t = 100 and t = 150. However, the folds contain almost
no vorticity and do not contribute significantly to the tail vorticity.

Figure 2 plots the evolution of the initially spherical vortex sheet at the indicated
times, computed with δ = 0.2. As in the planar case, the vortex sheet rolls up as it
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Figure 2. Computed axisymmetric solution at the indicated times, using δ = 0.2.

travels, forming a vortex ring. The ring leaves a tail behind that is quite different from
the planar tail. The lip observed at t = 20 is much longer than the planar one and
is not entrained back into the leading ring. By t = 40, it forms a tail that is clearly
separated from the main vortex and contains about 30% of the total circulation.
Thus, the axisymmetric flow displays significant vortex shedding not present in the
planar case. This indicates that the planar vortex pair entrains a larger region of fluid
in the symmetry plane than the axisymmetric ring. In the planar case, this region
appears to include the initial sheet while it only includes a portion of the initial sheet
in the axisymmetric case. The fact that a vortex pair entrains a larger region of fluid
than a vortex ring generated from similar initial conditions can also be observed in
simulations by Krasny & Nitsche (2000), who computed the evolution of initially flat
vortex sheets.

The beginning of the axisymmetric vortex shedding was observed in three-
dimensional computations by Winckelmans et al. (1995). Figure 3 shows the fur-
ther evolution of the axisymmetric vortex sheet roll-up. At t = 60, the vorticity in the
tail of the leading vortex ring V1 has rolled up into a second vortex ring V2. Notice
that at t = 60, V2 has a tail that is similar to that of V1 at t = 20, but smaller. This
suggests a repetition of the shedding process in a self-similar manner at a smaller and
smaller scale. Indeed, the tail of V2 rolls up into a vortex V3 (t = 140), which sheds
a tail that rolls up into a vortex V4 (t = 350), which sheds a tail that rolls up into a
vortex V5 (t = 500), apparently ad infinitum.

A detail of the computation remains to be explained. The leading vortex V1 contains
most of the circulation and therefore travels faster than the remaining vortices. At
t = 100, it is several ring diameters ahead of the tail vorticity. In order to follow
the shedding process to large times, V1 was replaced at t = 120 by a circular vortex
filament of equal circulation and impulse. This was found not to affect the local
dynamics of the tail vorticity. Similarly, at t = 300, V2 was replaced by a circular
vortex filament. As part of this process the folds of the outer vortex sheet turns, seen
for example on V1 at t = 100 and on V2 at t = 240, were also removed. As in the
planar roll-up, these folds contain almost no vorticity and do not affect the dynamics
of the remaining vortices.

To investigate how the observed planar and axisymmetric shedding behaviour
depends on the regularization of the flow by δ, figure 4 plots the solution at a fixed
time, computed with decreasing values of δ = 0.2, 0.1, 0.05, with the planar case at
t = 50 in the left column and the axisymmetric case at t = 30 in the right column. Both
the vortex sheet (y > 0) and the associated regularized vorticity (y < 0), computed as
the negative Laplacian of the streamfunction (2.5), are shown. The vorticity contours
decrease by factors of 2, so that approximately equally spaced contours reflect an
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Figure 3. Computed axisymmetric solution at the indicated times, using δ = 0.2. At t = 120, vortex
V1 is replaced by a circular vortex filament. At t = 300, vortex V2 is replaced by a circular vortex
filament.

exponentially decaying vorticity distribution. The largest contour level is ω = 2, 4, 8
for δ = 0.2, 0.1, 0.05 respectively. The smallest contour level is ω = 2−8.

The figure shows that the planar and axisymmetric shedding properties do not
change much with δ. The vorticity has local maxima at the centre of the leading
vortex and in the tail vorticity. As δ decreases, the maximum vorticity increases, the
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Figure 4. Vortex sheet (y > 0) and vorticity contours (y < 0) computed with the indicated values
of δ. (a–c) Planar, t = 50. (d–f) Axisymmetric, t = 30.

contour levels steepen, and the vortex sheet roll-up tightens, but the total amount
of circulation in the tail depends little on δ. It increases from 26% to 32% in the
axisymmetric case and from 5.5% to 7% in the planar case. As noted earlier, in the
planar case most of the tail vorticity is entrained by the leading vortex at later times,
with only 1.5% of the total circulation remaining in the tail at t = 150 for δ = 0.2.
As δ decreases, the length of the planar tail increases (see figure 4a–c), and thus the
portion that is not eventually entrained may possibly be bigger than 1.5%. The fact
remains that independently of δ the axisymmetric vortex sheds a significant amount
of circulation, approximately 30%, whereas the planar one sheds very little if any.

3.2. Self-similarity of the shedding process

The axisymmetric shedding process is slightly more complex than described so far.
The leading vortex V1 sheds a smaller vortex V2 which in turn sheds a vortex V3,
and this process appears to repeat itself. However, after shedding the vortex V3, V2

sheds another amount of vorticity, V ′2, as seen in figure 3 (t = 140). This vorticity
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Figure 5. Circulation Γn(t) of the nth vortex as a function of time t, n = 1, . . . , 5.

rolls up slowly (t = 240) and does not form a well-defined vortex ring. The amount
of vorticity in V ′2 is much smaller than in the previously released vortex V3. Thus V3

travels faster than V ′2 and soon catches up with the slower vortex (t = 350). Due to
the interaction between V ′2 and V3 it soon becomes difficult to distinguish between
them (t = 500) and the vortex evolution becomes less clear.

Note that this second shedding process just described also appears to repeat itself.
At t = 350, V3 is seen to shed a second amount of vorticity V ′3, whose shape is similar
to V ′2 at t = 140. Soon after t = 500, V ′3 will interact with V4. V4 in turn is expected
to shed a second vortex V ′4 which will interact with V5, etc.

To investigate the apparent self-similarity of the shedding process, we first define
the circulation of consecutive vortices Vn. Each vortex corresponds to a different
vorticity maximum. The contours in figure 4 show that consecutive vorticity maxima
are separated by saddle points in the vorticity distribution. The vortex Vn is defined as
the portion of the vortex sheet about the nth maximum approximately delimited by
saddle points. As an example, the crosses in figure 4(d–f, bottom half) denote saddle
points; the vertical line segments in figure 4(d–f, top half) denote the limit between
vortices V1 and V2. Once the portion of the sheet corresponding to Vn is determined,
its circulation Γn is defined by

Γn =

∫
x∈Vn

ω dA ≈∑
αj∈Vn

Γ ′(αj)∆αj. (3.1)

Figure 5 plots Γn as a function of time on a log-log scale. The open and solid circles
denote the times at which the data is evaluated. Each value of Γn decreases when
the next vortex with circulation Γn+1 is shed. The values of Γ2 and Γ3 decrease
slightly again at the time when the secondary vortices with circulation Γ ′2 and Γ ′3 are
shed. It is interesting to observe that these secondary vortices V ′2 and V ′3 are shed at
approximately the same time as V4 and V5, although no relation between these events
is known. We remark that it is not easy to determine the exact time at which a new
vortex is shed. The displayed shedding times simply reflect a time when a new saddle
point has clearly formed between two vorticity maxima.

Figure 6(a) plots the circulation Γn of the nth vortex after it is well separated from
the previous vortex, but before it has shed any further vorticity, that is, the values
of Γn at the times tn marked by solid circles in figure 5. The five data points in
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Figure 6. (a) Circulation of the nth vortex before shedding any further vorticity (solid line). Linear
approximation (dashed line). (b) Percentage circulation Pn,1 and Pn,2 shed by the nth vortex the first
and the second time respectively.

figure 6(a) are almost colinear on a semi-logarithmic scale. The dashed line has slope
−1.2. Therefore Γn(tn) decays as

Γn(tn) ∼ γ−n (3.2)

with γ = e1.2, implying that each vortex sheds approximately 1/γ = 30% of its
circulation into its tail. This is confirmed by figure 6(b), which plots the percentage
circulation Pn,1 of Vn that is shed into Vn+1 and shows that it equals approximately
30% for all n. Figure 6(b) also plots the percentage Pn,2 of the remaining circulation
of Vn that is shed into V ′n. Here, the only two data points available are for Vn, n = 2, 3.
Each sheds about 10% into V ′n.

Furthermore, the time that it takes for Vn to shed Vn+1 also appears to follow a
power law. Note that the vortex Vn is formed at time tn−1 and sheds the next vortex
Vn+1 at time tn, for n = 2, . . . , 4. The time tn − tn−1 appears to increase as 1/Γn,

tn − tn−1 ∼ γn. (3.3)

To illustrate this, figure 7 plots Γ ∗n = γnΓn vs. t∗n = (t− tn−1)/γ
n, for n = 2, . . . , 5. The

value n = 1 is excluded since V1 did not arise through shedding and therefore t∗1 is not
defined. Each curve in the figure corresponds to a different value of n. All curves almost
collapse onto one curve, giving evidence that the scaling laws (3.2) and (3.3) are fairly
well satisfied. Equation (3.3) holds since each vortex Vn, for n = 2, . . . , 4, sheds the
next vortex Vn+1 at aproximately the same time t∗ = 2, thus showing that (tn− tn−1)/γ

n

is approximately constant. Notice that the second vortex shedding of V ′n, for n = 2, 3,
also occurs at approximately the same time t∗ = 7.5. The non-dimensional timescale
therefore appears to be proportional to Γn(t − tn−1). The length scale used in this
non-dimensionalization is the initial radius a. One would however suspect that the
appropriate length scale would be a characteristic size an of the nth vortex. The reason
that this does not work as well may be due to the fact that there is another parameter
in the numerical experiment, δ/an, which varies from vortex to vortex.

3.3. On Kelvin’s energy principle

We now relate the observed shedding to a variational principle due to Lord Kelvin.
For planar vortices in a steady state, the kinetic energy is at a local extremum
with respect to perturbations that preserve the circulation of fluid elements and the
total impulse (Saffman 1992, § 14.2). For axisymmetric axis-touching vortex rings, the
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Figure 7. Scaled circulation Γ ∗n of the nth vortex as a function of scaled time t∗n, n = 2, . . . , 5.

steady states are expected to occur at local maxima of the kinetic energy (Kelvin 1880;
Benjamin 1976). Gharib et al. (1998, referred to as GRS) and Mohseni & Gharib
(1998) applied this principle to explain observations in experiments in which a vortex
ring was formed by ejecting fluid from the edge of a tube. GRS observed that the
ring circulation could not be made as large as desired by simply continuing to eject
fluid from the tube. After a critical value of the piston stroke, the ejected circulation
was no longer absorbed by the leading ring but formed secondary vortices in its tail.
GRS showed that the leading ring’s circulation stopped increasing when the rate at
which circulation, impulse and energy were ejected was too small to maintain the
energy of the ring. They considered a normalized energy that scaled out variations in
circulation and impulse. The results are consistent with the premise that the ring had
reached a local energy maximum and corresponding steady state. GRS also observed
that rings which had gained excess circulation through entrainment reduced it by
vortex shedding. They conjectured that such shedding would occur for rings whose
energy is too small to sustain a steady state.

Here, we investigate the relation between the present vortex shedding and the
energy of the vortices. Following GRS, each vortex Vn is normalized with respect to
its total circulation and impulse. The corresponding non-dimensional energy En is

En =
Kn

Γ
3/2
n I

1/2
n

, (3.4)

where the kinetic energy Kn and impulse In are

Kn = π

∫
x∈Vn
y>0

ψω dA ≈ π∑
αj∈Vn

ψ(xj, yj , t)Γ
′(αj) ∆αj, (3.5)

In = π

∫
x∈Vn
y>0

y2 ω dA ≈ π∑
αj∈Vn

y2
j Γ

′(αj) ∆αj. (3.6)

Figure 8 (solid curves) plots En vs. t for the computations shown in figures 2 and 3.
Comparison with figure 5 shows that each time Vn sheds a vortex, its non-dimensional
energy En increases. The values of E2 and E3 increase twice, since the corresponding
vortices shed vorticity twice. After this second increase, no more significant energy
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Figure 8. Non-dimensional energy En of the nth vortex vs. time, for computations with δ = 0.2
(solid line) and δ = 0.1, 0.05 (dotted line).

increase and corresponding vortex shedding is expected. Notice that the values of
E2–E4 decrease before the first vortex shedding, instead of being constant as they
would for an isolated vortex. This is attributed to the proximity of neighbouring
vortices shortly after shedding and associated transfer of impulse and energy.

We interpret these data as follows. The initial spherical vortex is not at a steady
state and its non-dimensional energy is far from a local maximum. As conjectured
by GRS, this results in circulation shedding, which causes the vorticity distribution
within the vortex to change so that its non-dimensional energy increases. Presumably,
with each shedding the energy approaches a local maximum and the corresponding
vortex approaches a steady state. The process repeats itself for the subsequent vortices.

The values of the computed energy E depend on the regularization by δ. The
dotted curves in figure 8 show the results for computations with δ = 0.1 and 0.05
on a small time interval on which they could be resolved. As δ decreases, the initial
value of E1 converges to the exact value for the unregularized spherical vortex sheet,
1
3

√
π/6 ≈ 0.24. The value of E1 at late times appears to increase to approximately

0.45 as δ decreases. The values of E2–E5 at late times when no more shedding occurs
are expected to be all equal, since the corresponding vortices appear to be self-similar.
However, in figure 8, these values decrease with n. This is attributed to the increasing
values of δ for each vortex, relative to the vortex size. It is expected that in the limit
δ → 0 the late time values of En, n > 2, are all equal.

The long-term steady vortex rings observed by GRS have non-dimensional energy
E ≈ 0.33. Norbury (1973) computed a family of steady vortex rings with varying
mean core radius 0 6 rc 6

√
2 for which 0.16 6 E 6 ∞, where E increases as rc

decreases. The present vortex V1 therefore has different energy E at late times than
GRS’s steady ring, which implies that it has a different vorticity distribution. It has
the same energy as a Norbury vortex with rc ≈ 0.3. It is not clear how the late-time
values of E2–E5 compare with the value observed by GRS.

4. Summary
The roll-up of a cylindrical and a spherical vortex sheet into a vortex pair and a

vortex ring respectively was computed with the vortex blob method. The vortex pair
travels downstream leaving almost no vorticity behind. In contrast, the vortex ring
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sheds about 30% of its circulation into a tail. This shedding process repeats itself
in a self-similar manner: each tail rolls up to form a new ring which sheds 30% of
its circulation into a new tail. The time interval between formation and shedding is
proportional to the inverse of the rings’ circulation. Each ring except the leading one
appears to undergo a second shedding of about 10% of its remaining circulation.
With each shedding, the non-dimensional energy of the vortex rings increases and
presumably approaches a local maximum at which the rings translate steadily. The
shedding process is therefore viewed as a mechanism by which the rings approach a
steady state.

I thank Vachtang Putkaradze and Karim Shariff for helpful comments. This work
was supported by NSF grant DMS-9996254.
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